Category Archives: Application Areas of Text Analytics

Posts about Application Areas of NLP / Natural Language Processing / Text Analytics

Active social listening to protect Online Reputation (Part 2)

EDITOR’S NOTE: This is a guest post by Leopoldo Martínez D., a researcher and consultant on social media corporate intelligence and lecturer at UCV and IESA (Venezuela), and it was originally published on his blog (in Spanish).

 

  1. Introduction

As I stated in the first part of this post, I will show how online reputation evaluation was used in a real situation related to the tourism industry.

  1. The unexpected event: A shooting at a music festival in Playa del Carmen, Riviera Maya

January 6-15, 2017, a music festival was scheduled to be held in Playa del Carmen, as well as a series of events related to both music and the tourism industry. On January 15, a shooting occurred in a well-known bar where people were celebrating the end of the festival.

When the shooting happened, messages quickly spread through social networks to give information and comment on the context in which the incident and how it happened. Some conversations revealed an interesting fact: The shooting was not an isolated event but stemmed from the “situation of crime that the Riviera Maya went through in 2011″.

Could this affect the Riviera Maya’s reputation as a tourist destination? Could “several years in a situation of crime” have already influenced the tourism industry’s image? These are some of the questions that the public and private actors that provide services and products in this tourist area might have been asking themselves.

Continue reading


What is the Voice of the Employee (VoE)?

Voice of the Employee. Silhouettes with bubbles representing dialog

Finding committed employees is one of public and private organizations’ top priorities. Thus, listening to the Voice of the Employee by systematically collecting, managing and acting on the employee feedback on a variety of valuable topics is essential.

The relationship between Voice of the Employee (VoE) and Engagement is very similar to the one between Voice of the Customer (VoC) and Customer Experience. VoC provides information to improve customer experience. Voice of the Employee promotes employees’ engagement in the company and their work. See: Voice of the Employee, Voice of Customer and NPS

Voice of the Employee collects the needs, wishes, hopes, and preferences of the employees of a given company. VoE considers specific needs, such as salaries, career, health, and retirement, as well as implicit requirements to satisfy the employee and gain the respect of colleagues and managers.
Continue reading


Active social listening to protect Online Reputation (Part 1)

EDITOR’S NOTE: This is a guest post by Leopoldo Martínez D., a researcher, consultant on social media corporate intelligence and lecturer at UCV and IESA (Venezuela), and it was originally published on his blog (in Spanish).

 

1. Introduction

In this previous post, I suggested that conversations taking place in virtual communities fostered by a digital marketing plan generate feedback that is useful for assessing and monitoring a digital’s marketing strategy’s performance.

This feedback could generate a huge amount of valuable data (Big Data) which enables the creation of a knowledge base for the topic being talked about, who is participating, who is having the greatest impact on brand image, products, people, or organizations.

This knowledge base can also be fed by discussions arising from unexpected events which are not part of the communication plan but deal with the virtual community’s topics of interest.

To specifically assess the conversation’s impact, it is necessary to pay attention (beyond listening) to what is being said through metrics (qualitative and quantitative) that reflect the online community’s perception on brands, products, people, or organizations. After all, this perception is a way to measure an online reputation.

With this need in mind, the purpose of this post is to show how to use the active listening of conversations in social networks to evaluate your online reputation.
Continue reading


Customer experience, a win-win in restaurants

 BLT sandwich, buttered or not?

 

Do you know if your customers prefer buttered toast in your BLT sandwich? Don’t worry; MeaningCloud is the kitchen helper you need to suit your dinner guest. Customer experience is the ingredient you need. Surfing the Internet you find hundreds of websites and apps to give feedback on restaurants. You could find by chance people talk about yours. Can you imagine people disparaging your BLT sandwich? For your information, I’d rather have it buttered.
blt-sandwich

Continue reading


Join MeaningCloud at the 2016 Sentiment Analysis Symposium

Banner Sentiment Analysis SymposiumMeaningCloud is excited to be sponsoring the 2016 Sentiment Analysis Symposium, taking place July 12 in New York. Join us there!

The Symposium is the first and best conference to address the business value of sentiment, opinion, and emotion in social, online, and enterprise data. The audience is comprised of business analysts, developers, data scientists, and researchers, applying text, sentiment, and social analytics to a host of business challenges. And the speakers? They represent users like Johnson & Johnson, the Mayo Clinic, and VML, analysts like Forrester Research, and innovative start-ups and established technology players.

We will present MeaningCloud’s text and sentiment analysis technology during the symposium program, and you can meet us for a personalized demo in the SAS16 exhibit area or for an informal chat during symposium networking breaks.

If you’re up for a deep technical introduction, start your Symposium experience with an optional half-day tutorial — Computing Sentiment, Emotion, and Personality — taught July 11.

There’s good reason the Symposium has been going strong since 2010. Come network and learn with some of the best sentiment and social data innovators around. Use the registration code MEANING to save 20% on your ticket — register online here — and we’ll see you in New York!


Sentiment Analysis in Excel: optimizing for your domain

In previous tutorials about Sentiment Analysis and our Excel add-in, we showed you step by step how to carry out a sentiment analysis with an example spreadsheet. In the first tutorial we focused in how to do the analysis, and then we took a look at the global polarity we obtained. In the second tutorial, we showed you how to customize the aspect-based sentiment analysis to detect exactly what you want in a text through the use of user dictionaries.

In this tutorial we are going to show you how to adapt the sentiment analysis to your own subdomain using of our brand new sentiment model customization functionality.

We are going to continue to use the same example as in the previous tutorials, as well as refer to some of the concepts we explain there, so we recommend to check them out beforehand, specially if you are new to our Excel add-in. You can download here the Excel spreadsheet with the data we are going to use.

The data we have been working on are restaurant reviews extracted from Yelp, more specifically reviews on Japanese restaurants in London.

In the last tutorial, we saw that some of the results we obtained could be improved. The issue in these cases was that certain expressions do not have the same polarity when we are talking about food or a restaurant than when we are using them in a general context. A clear example of this is the verb ‘share’. It is generally considered something positive, but in restaurant reviews it’s mostly mentioned when people order food to share, which has little to do with the sentiment expressed in the review.

This is where the sentiment model customization functionality helps us: it allows us to add our own criteria to the sentiment analysis.

Let’s see how to do this!
Continue reading


Sentiment Analysis in Excel: customizing aspect-based analyses

In the previous tutorial we published about Sentiment Analysis and MeaningCloud’s Excel add-in, we showed you step by step how to do a sentiment analysis using an example spreadsheet. Then we showed you a possible analysis you could obtain with its global polarity results.

In this tutorial we are going a bit further: instead of analyzing the global polarity obtained for different texts, we are going to focus on the analysis of different aspects that appear in them and how to use our dictionaries customization console to improve them and to extract easily the exact information you are interested in.

We are going to work withe same example as before: reviews for Japanese restaurants in London extracted from Yelp. If you don’t have it already from the previous tutorial, you can download the spreadsheet with the data here.

If you followed the previous tutorial, you will remember that when you run the sentiment analysis without changing its default settings, two new sheets appear: Global Sentiment Analysis and Topics Sentiment Analysis. Topics Sentiment Analysis shows you the concepts and entities detected in each one of the texts and the sentiment analysis associated to each one of them.

But what can we do when these are not the aspects of the text we are interested in analyzing? This is where our customization tools come in. Our dictionaries customization console allows you to create a dictionary with any of the concepts or entities you want to detect in your analysis, down the type you want them to have associated.

So how do we create this user dictionary?
Continue reading


A tailored sentiment analysis (recorded webinar)

Last May 4th we presented our webinar “An entirely tailored sentiment analysis using MeaningCloud”. Thank you all for your attendance.

After a brief introduction to MeaningCloud and the operation of its add-in for Excel, we developed a practical example of sentiment analysis in a specific domain (restaurant reviews) and showed how MeaningCloud’s customization tools can be used to improve the accuracy of the analysis:

  • By including attributes that are relevant to the domain and focusing the analysis around them, through the creation of personal dictionaries of entities and concepts.
  • By specifying the polarity of expressions in the domain depending on the context, thanks to the definition of personal sentiment models.

Together, these tools enable our users to be greatly autonomous in the customization of MeaningCloud and put the highest-quality sentiment analysis at everybody’s fingertips.

Continue reading


Sentiment Analysis in Excel: getting started

Excel spreadsheets are one of the most extended ways of working with big collections of data. They are very powerful and they are very easy to combine and integrate with a myriad of other tools. Through our Excel Add-in we provide you a way of adding MeaningCloud’s analyses to your work pipeline. It’s very simple and it has the added benefit of not needing to write any code to do it.

In this tutorial we are going to show you how to use our Excel Add-in to do sentiment analysis. We are going to do so by analyzing restaurant reviews we’ve extracted from Yelp.

To get started, first you need to register in MeaningCloud (if you haven’t already), and download and install the Excel add-in in your computer. Here you can read a detailed step by step of the process.

Once you’ve installed it, a new tab called MeaningCloud should appear when you open Excel. If you click on it, these are the buttons you will see.

excel add-in ribbon

The first thing you need to do to start using the add-in is to copy your license key and paste it on the corresponding field in the settings menu. You will only have to do this the first time you use the add-in, so if you have already used it, you can skip this step.

Once the license key is saved, you are ready to start analyzing!
Continue reading