Tag Archives: text classification

Posts related to automatic text classification

Automatic IAB tagging enables semantic ad targeting

Our Text Classification API supports IAB’s standard contextual taxonomy, enabling content tagging in compliance with this model in large volumes and with great speed, and easing the participation in the new online advertising ecosystem. The result is the impression of ads in the most appropriate context, with higher performance and brand protection for advertisers.

What is IAB’s contextual classification and what is it good for

The IAB QAG contextual taxonomy was initially developed by the Interactive Advertising Bureau (IAB) as the center of its Quality Assurance Guidelines program, whose aim was to promote the advertised brands’ safety, assuring advertisers that their ads would not appear in a context of inappropriate content. The QAG program provided certification opportunities for all kinds of agents in the digital advertising value chain, from ad networks and exchanges to publishers, supply-side platforms (SSPs), demand-side platforms (DSPs), and agency trading desks (ATDs).

The Quality Assurance Guidelines serve as a self-regulation framework to guarantee advertisers that their brands are safe, enhance the advertisers’ control over the placement and context of their ads, and offers transparency to the marketplace by standardizing the information flowing among agents. All this, by providing a clear, common language that describes the characteristics of the advertising inventory and the transactions across the advertising value chain.

Essentially, the contextual taxonomy serves to tag content and is made of standard Tiers, 1 and 2 – specifying, respectively, the general category of the content and a set of subcategories nested under this main category – and a third Tier (or more) that can be defined by each organization. The following pictures represent those standard tiers.
Continue reading


#ILovePolitics: Political discourse analysis in social media

We continue with the #ILovePolitics series of tutorials! We will show how to use MeaningCloud for extracting interesting insights to build your own Political Intel Reports and, at the same price, turning you into a Data Scientist giant in the field of Social Media Analytics.

political issues

Political issues

Politics and Social Media Analytics

Our research objective is to study and compare the discourse of different politicians during the electoral campaign, using their messages in Twitter. We are going to compare tweets by the four most popular (mentioned) politicians in our previous tutorial: Barack Obama (@barackobama), Hillary Clinton (@HillaryClinton), Donald Trump (@realDonaldTrump) and Jeb Bush (@JebBush).

  • What are their key messages?
  • What do they focus on?
  • Are really there different ways of doing politics?

Before we start, three remarks: 1) we will focus on U.S. Politics, in English language, but the same analysis can be adapted for your own country or language as long as it is supported in MeaningCloud, 2) this is a technical tutorial: we will develop some coding, but in general, everyone can understand the purpose of this tutorial, and 3) although this tutorial will use PHP, any non-rookie programmer can translate the programs to any language.

Continue reading