Archivo de categorías: Procesamiento Semántico

Entradas sobre procesamiento semántico.

La comunicación en tiempos del coronavirus (IV): Análisis de los discursos del presidente del Gobierno de España

Este artículo es la cuarta entrega de la serie sobre análisis de contenidos generados por medios digitales y usuarios de Twitter en torno al coronavirus, inicialmente centrados en España, aplicando nuestra experiencia y nuestras soluciones de Text Analytics para analizar el ingente volumen de información en lenguaje natural disponible.

Este estudio aborda de forma muy preliminar el análisis de los discursos del presidente del Gobierno de España, Pedro Sánchez Castejón, en sus comparecencias desde el inicio de la crisis hasta el momento, para extraer conclusiones de los mensajes que pretendía transmitir en cada una de sus alocuciones.

Continuar leyendo


La comunicación en tiempos del coronavirus (III): Análisis temático de Twitter en España con modelo específico COVID-19

Este es el tercer artículo de la serie sobre análisis de contenidos generados por medios de comunicación y usuarios en redes sociales en torno al coronavirus, aplicando nuestra experiencia y nuestras soluciones de Text Analytics para analizar el ingente volumen de información en lenguaje natural disponible.

Este estudio es la continuación del análisis temático de Twitter en España, pero aplicando el modelo de categorización específico que desarrollamos con la temática del coronavirus (modelo COVID-19), utilizado en el análisis temático de noticias en medios digitales de España. El objetivo es analizar el interés temático en Twitter, utilizando el modelo específico desarrollado, en cada Comunidad Autónoma, en los últimos 10 días.

Continuar leyendo


La comunicación en tiempos del coronavirus (II): Análisis temático de Twitter en España

Este es el segundo artículo (ver el primero aquí) de la serie sobre análisis de contenidos generados por medios de comunicación y usuarios en redes sociales en torno al coronavirus, aplicando nuestra experiencia y nuestras soluciones de Text Analytics para analizar el ingente volumen de información en lenguaje natural.

En este caso nos centramos en intentar analizar, en la medida de lo posible, el interés temático en Twitter en cada región de España, específicamente realizando un análisis por Comunidad Autónoma, en los últimos 10 días.

Continuar leyendo


Caso de estudio: Voz del paciente en la industria farmacéutica

Las compañías farmacéuticas están extendiendo sus proyectos de Voz del Paciente a las redes sociales: comentarios en foros web, encuestas, Twitter, etc.

El objetivo de la prueba de concepto de esta compañía farmacéutica en España fue: “Recopilar y analizar cuantitativa y cualitativamente la voz del paciente desde los canales donde se expresa”, en redes sociales como foros web, Facebook, Twitter y otros sistemas.

Para la industria farmacéutica, es esencial escuchar y comprender los comentarios que sus clientes actuales y potenciales se expresan a través de todo tipo de medios y puntos de contacto.

Y los foros web reúnen millones de posts. Un foro web es un punto de encuentro para pacientes. Comparten apoyo, experiencias y sabiduría con compañeros, familiares y amigos.

Continuar leyendo


MeaningCloud participa en el primer Global Legal Hackathon

Global Legal Hackaton

Del 23 al 25 de febrero de 2018, se celebró la primera fase del primer Global Legal Hackaton (GLH). David Fisher, organizador del evento y fundador de la empresa tecnológica y legal Integra Ledger, estima que el GLH generará un gran impacto. No es una afirmación precipitada, ya que la participación global en el GLH se acerca a la que obtuvo un evento anterior organizado por la NASA y se ha considerado el mayor hackatón organizado hasta la fecha. Durante 54 horas, más de cuarenta ciudades de los seis continentes participaron simultáneamente. Los equipos estaban formados por ingenieros, juristas, abogados y empresarios y todos trabajamos con un objetivo en común: crear inicios de proyectos legales que puedan favorecer la mejora de la labor jurídica o el acceso a la Justicia a través de una app, un programa o software. Continuar leyendo


Voz del Cliente en Seguros

Para las compañías de seguros resulta vital entender el feedback que sus clientes -actuales y potenciales- expresan a través de todo tipo de canales y puntos de contacto. A toda esta valiosa información le llamamos la Voz del Cliente. Por cierto, no hace mucho, le dedicamos un post al papel de la Minería de texto en el sector de seguros.

(Este post es un desarrollo de la presentación de meaningcloud.com en el I Congreso de Big Data en el sector asegurador español organizado por ICEA. Más abajo tenemos la presentación que hicimos desde Meaning Cloud).

Cada vez hay más empresas que entienden que para crecer de forma rentable en entornos de mucha competencia, necesitan clientes satisfechos. Conseguir diferenciación entre los productos de las aseguradoras no resulta fácil.  La experiencia del cliente (Customer Experience) es un elemento fundamental en el éxito comercial del sector.

Escuchar, entender y actuar sobre lo que los clientes nos están diciendo sobre su experiencia con nuestras compañías está directamente relacionado con la mejora de la Experiencia de Usuario y con la rentabilidad. En el post sobre Voz del Cliente y NPS vimos con más detalle esta correlación entre experiencia de cliente y beneficios.

 

Continuar leyendo


Introducción al análisis de sentimientos (minería de opiniones)

En la última década, el análisis de sentimientos (SA, sentiment analysis), también conocido como minería de opiniones (opinion mining), ha despertado un creciente interés. Resulta un gran reto para las tecnologías del lenguaje, ya que obtener buenos resultados es mucho más difícil de lo que muchos creen. La tarea de clasificar automáticamente un texto escrito en un lenguaje natural en un sentimiento positivo o negativo, opinión o subjetividad (Pang and Lee, 2008), es a veces tan complicada que incluso es difícil poner de acuerdo a diferentes anotadores humanos sobre la clasificación a asignar a un texto dado. La interpretación personal de un individuo es diferente de la de los demás, y además se ve afectada por factores culturales y experiencias propias de cada persona. Y la tarea es aún más difícil cuanto más corto sea el texto, y peor escrito esté, como es el caso de los mensajes en redes sociales como Twitter o Facebook.

Continuar leyendo


Descubre insights inesperados con la nueva release de MeaningCloud

Acabamos de publicar una nueva release de MeaningCloud con algunas novedades que van a cambiar tu manera de hacer analítica de texto. Como complemento a las técnicas analíticas más habituales -que extraen información o clasifican un texto en función de diccionarios y categorías predefinidos- incorporamos técnicas de aprendizaje no supervisado que permiten explorar una serie de documentos para descubrir y extraer de ellos insights (temas, relaciones) no previstos.

En esta nueva release de MeaningCloud publicamos una API de Clustering de Texto que  permite descubrir la estructura implícita y los temas significativos que emergen de los contenidos de tus documentos, conversaciones sociales, etc. Esta API toma un conjunto de textos y los distribuye en grupos (clusters) en función de la similitud entre los contenidos de cada documento. El objetivo es que los documentos de un cluster sean muy parecidos entre sí y muy diferentes a los otros clusters.

El clustering es una tecnología utilizada tradicionalmente en el análisis de datos estructurados. Lo que tiene de particular nuestra API es que sus pipelines están optimizados para analizar texto no estructurado.

Text Clustering API

Continuar leyendo