TV Social con Análisis Semántico y Big Data

Recientemente hemos participado en la conferencia Big Data Spain con una charla titulada “Real time semantic search engine for social TV streams”. En esta charla resumimos nuestra experiencia en el área de Analítica de Medios Sociales, donde estamos combinando tecnologías de análisis semántico y de procesamiento de flujos de datos (streams) en tiempo real para entender las redes sociales y en concreto la TV Social

La TV Social es un fenómeno en claro crecimiento ya que cada vez es más frecuente el uso de redes sociales mientras vemos la televisión. Por ejemplo, Twitter ya reportaba el año pasado que en Reino Unido más de un tercio de todos los comentarios durante el primetime eran sobre lo que pasaba en la pantalla del televisor. Hace semanas, Facebook reivindicaba su lugar en la TV social afirmando que el volumen de comentarios privados sobre TV en su plataforma era 5 veces mayor. Esta red social ha empezado también a ofrecer hashtags e incluso una nueva API, Keywords Insight, para que algunos socios tengan acceso a estadísticas agregadas de las conversaciones dentro de los muros de Facebook.

A medida que el número de usuarios que acaban comentando su programa favorito de TV en las redes sociales con amigos o extraños, las cadenas han empezado a hacer uso de estas herramientas para participar en la conversación. Durante el último año se ha incrementado el número de programas que hacen uso de hashtags oficiales, a veces incluso varios durante una sola emisión. Más allá de la búsqueda del trending topic, los que con mayor éxito han experimentado fomentan incluso la participación de presentadores o actores durante la emisión del programa. En España, “Salvados” o “Pesadilla en la Cocina” son ejemplo de lo primero y la serie “Isabel” para el caso de los actores.   

Aunque no hay nada nuevo en el hecho de socializar alrededor del contenido de la tele, la posibilidad de medir y de destilar estos comentarios sí que es característico del nuevo contexto. Además, esta conversación no se produce al día siguiente sino que su impacto es inmediato. Todo esto se suma para abrir un nuevo abanico de posibilidades para espectadores, radiodifusores y las grandes marcas. Los usuarios han encendido la mecha de la TV Social ya que les conecta con amigos y el resto de la audiencia.  Es a la vez una forma de sentirse parte del programa y al mismo tiempo de involucrarse más. Por tanto, las herramientas que faciliten organizar y comprender la conversación son de especial interés para el espectador social. Para el resto de espectadores, incluso para aquellos que solo participan leyendo, es una forma de generar tanto recomendaciones sociales. Otro uso interesante es que analizar la conversación social permite contextualizar contenido relevante y relacionado con el programa como información sobre los actores, personajes o cualquier otro concepto del que se hable en la pantalla grande.

Por otro lado, comprender la conversación en torno a un programa es de tremenda utilidad para los canales de TV y las marcas que los financian. Las productoras y cadenas pueden medir las preferencias de sus espectadores y los de la competencia, y además en tiempo real, según se está emitiendo. Está información cualitativa permite hacer una lectura mucho más informada de los datos cuantitativos de audiencia. Llegar a los consumidores adecuados y medir el impacto de las campañas de publicidad son solo dos ejemplos de lo que las marcas buscan en la TV social. Por último, no solo se trata de escuchar pasivamente, tanto los programas como los anuncios van a ser cada vez más interactivos y a buscar la participación de los espectadores mediante las redes sociales.  

En nuestra charla, describimos un sistema que combina análisis semántico y tecnologías de big data como una herramienta para sacar partido de las redes sociales. El sistema combina varios componentes de procesamiento de lenguaje natural de MeaningCloud API junto a una base de datos semi-estructurada, SenseiDB, para proporcionar visualizaciones interactivas de los comentarios de TV sobre la base de la búsqueda semántica, la búsqueda por facetas y un sistemas de analítica en tiempo real.

Mediante el uso de MeaningCloud somos capaces de extraer información relevante para la TV social como el sentimiento acerca de una entidad (un programa, actor o deportista) Además, el reconocimiento de entidades y la extracción de información temática nos permite producir trending topics dentro de un programa con una alta correlación con lo que ocurre en pantalla. Estos temas unidos a las facetas online proporcionadas por SenseiDB funcionan como una manera efectiva de organizar la conversación al vuelo. Otras funcionalidades como el reconocimiento de idioma o la clasificación de texto cumplen un papel importante pero oculto y nos ayudan a filtrar el flujo de comentarios de contenido ruidoso.  

El segundo de los componentes esenciales del sistema es SenseiDB, una base de datos semi-estructurada de código abierto que permite ingerir streams y buscarlos en tiempo real, es decir, con baja latencia tanto en la indexación como en la búsqueda. SenseiDB incluye un gran número de tipos de facetas que permiten organizar los metadatos semánticos que extraemos con MeaningCloud. Con la ayuda de facetas de tipo histograma o rango se pueden realizar incluso ciertas tareas de analítica que incluyen tipos de datos complejos como el tiempo. Además, una de las características más interesantes es que incluye un lenguaje de consulta sencillo e intuitivo, BQL, que es de gran utilidad para el desarrollo iterativo de visualizaciones.

Si te ha parecido interesante, te animo a que le eches un vistazo a la presentación o incluso al vídeo del evento.


Leave a Reply

Your email address will not be published. Required fields are marked *

*
*